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Abstract The ground surface represents the land‐atmosphere interface and plays a crucial role in
exchanging energy, matter, and biochemical fluxes. The ground surface temperature (Ts) is hence widely
investigated as an indicator to understand the thermal state of soil in a warming world. However, regular and
continuous Ts measurements are rare worldwide, and the early Ts records were derived from snow surface
measurements and are not comparable with the measurements of modern automatic systems. In this study, we
reconstruct the Ts records of the China Meteorological Administration (CMA) for 1956–2022 by numerical
simulation. The results show that the mean annual ground surface temperature (MAGST) during 1981–2010
ranged from 0.4 to 30.8°C at 632 stations. TheMAGSTwas mainly controlled by air temperature and refined by
snow depth. The overall MAGST increased by 0.20 ± 0.02°C dec− 1 across China during 1956–2022 and
showed pronounced interdecadal variability corresponding to the surface air temperature (0.23± 0.03°C dec− 1).
At the snow‐covered sites, the Ts warming was amplified by increased snow depth, leading to about 0.24°C
dec− 1 (or 70.6%) faster warming for Ts in winter compared to that of surface air temperature. Many of the early
reported ground surface temperature studies based on CMA measurements did not consider the measurement
inconsistency and likely overestimated the warming trend of ground surface temperature over China.

Plain Language Summary Ground surface temperature (Ts) affects a variety of temperature‐related
phenomena on the Earth's surface and is hence widely investigated as an indicator to understand the interaction
of land‐atmosphere in a warming climate. However, continuous Ts measurements are rare worldwide. Restricted
by the early measurement conditions, the early Ts records were recorded manually from the snow surface, and
are not comparable with the measurements of the modern automatic systems. Therefore, we reconstructed a Ts
time series for the China Meteorological Administration (CMA) data for 1956–2022 by numerical simulation.
Our results show that the mean annual ground surface temperature (MAGST) increased by 0.20°C dec− 1 across
China during 1956–2022. The MAGST was mainly controlled by air temperature and refined by snow depth. Ts
warming was amplified by about 0.24°C dec− 1 (or 70.6%) in winter by increased snow depth since 1970,
compared to the surface air temperature. Many of the early reported Ts studies based on CMAmeasurements did
not consider the measurement inconsistency and likely overestimated the warming trend of Ts over China.

1. Introduction
The thermal state of soil varies in response to many climatic and topographic factors, including near‐surface air
temperature (Cao et al., 2018), vegetation cover (Cermak et al., 2017), precipitation (Magnússon et al., 2022), soil
moisture (Zwieback et al., 2019), and snow cover (Cao et al., 2020; Zhang, 2005). Various processes, such as
hydrological processes (Jin et al., 2009), vegetation growth (Kumar & Shekhar, 2015), infrastructure construction
(Hjort et al., 2018), and landscape features (Streletskiy et al., 2017), are strongly dependent on the nature and
temperature of the soil.

The ground surface represents the land‐atmosphere interface and plays a crucial role in the exchange of energy,
matter, and biochemical fluxes. The ground surface temperature (Ts) fluctuates in response to high‐frequency
variations in large‐scale atmospheric circulation and fine‐scale surface conditions. It is hence widely investi-
gated as an indicator to understand the thermal state of soil under a warming world (Burke et al., 2020; Smith
et al., 2022; Zhang et al., 2018). In addition, Ts measurements are commonly used to calibrate models' surface
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energy balance components or as an upper boundary for soil hydrothermal process simulation (Gisnås et al., 2014;
Sun et al., 2022). Despite the importance, regular Ts measurements, especially long‐term time‐series measure-
ments, are relatively rare and often unavailable in most regions.

Since the 1950s, routine Ts measurement has been conducted by the ChinaMeteorological Administration (CMA)
(Wang et al., 2015). Ts was manually obtained from the bare ground (i.e., at a depth of 0.03 m) or the snow
surface, if seasonal snow was present, and mercury thermometers were typically used (CMA, 2013; Gilichinsky
et al., 1998). The temperature recorded in this way represents the land surface temperature (LST, e.g., snow
surface during snow‐covered periods) rather than Ts, although the variable name was assigned as Ts in the CMA
records. Since 2000, the manual observation system of the CMA has gradually advanced to an automatic one (Cui
et al., 2020). These systems differ in their Ts measurement when the ground is covered by snow, Ts is taken from
the surface of the ground beneath the snow in the automatic system using a platinum resistance sensor. The CMA
data sets do not include any correction to account for the change in measurement methodology, leading to the Ts
records of the CMA being inconsistent (Cao et al., 2023; Liao et al., 2019; Wang et al., 2017).

A few studies have reported that, at the stations with snow cover, the automatically measured daily Ts can be up to
about 15°C warmer than the manual measurements, which can be attributed to the snow insulation effects (Cui
et al., 2020; Du et al., 2020; Zhang, 2005). However, this issue has either been ignored or inaccurately interpolated
as being consistent across Ts measurements, and soil climate warming since 2000 has been overestimated over
China (Cao et al., 2023; Wang et al., 2018; Zhang et al., 2016). Only very limited studies considered the
inconsistency. For example, Du et al. (2020) and Xu et al. (2019) developed a semi‐physical statistical model to
derive homogenized Ts records. However, these algorithms lack an explicit expression of the influences of snow
cover on soil thermal state and cannot be applied in Ts restruction at a high‐temporal resolution. To understand the
Ts climatology over China, long‐term consistent ground surface records that fill the measurement gaps are
required.

In this study, we aimed to: (a) produce consistent Ts records for the CMA stations over China for 1956–2022 via
numerical simulation; and (b) investigate the soil climatology and the controlling factors based on the corrected
records. The outputs of this study will provide a unique opportunity to analyze the thermal state of soil change and
its response to climate change over China and could be extended to wider regions using a similar Ts measurement
algorithm.

2. Observations
2.1. CMA Observations

The daily Ts records from 632 CMA stations were used in this study for model evaluation (Figure 1a; Table 1).
Since the Ts observations before 2007 were derived from snow surface measurements (Figure 2, Cui et al., 2020),
only the measurements after that were used to evaluate the simulated ground surface temperature (Tmods ). To
investigate the Ts changes and to force the process‐based model, daily observations of near‐surface air temper-
ature (Ta), air pressure (airP), and snow depth (HS) were also used in this study (Table 1). The data cover the
period from 1956 to 2022, but not all the data are available in a single year (Figure 1b). Note that the earlier period
was not involved here as the CMA station was relatively limited at low altitudes (Peng et al., 2017). The CMA
stations cover a wide elevation range of about 0–4900 m, and a variety of terrain (Figures 1a and 1c). The strong
influence of seasonal snow on the thermal state of soil has been extensively investigated (Zhang, 2005). The CMA
observations were hence divided into snow‐covered and snow‐free sites, to distinguish the controlling factors of
Ts changes. In this study, a site with a stable snow‐covered period, that is, the mean consecutive snow‐covered day
was ≥30 days during the measured period, was classified as a snow‐covered station following Zhang and
Zhong (2014).

2.2. Radiation Observations

Surface downwelling longwave (LWd) and shortwave radiation (SWd) data were required for the model forcing,
but these observations were not available in the CMA network. They were hence derived from the ERA5
reanalysis, and the downscaled LWd and SWd (see Section 3.1) were evaluated at 24 and 12 additional stand‐alone
sites, respectively (Figure 1a; Table 1). The stand‐alone observations of LWd were from Ma et al. (2020); Zhu
et al. (2021); Zhao, Zou, et al. (2021), while the SWd was from Ma et al. (2020); Zhao, Zou, et al. (2021). The
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radiation observations covered the period of 2004–2018. The outliers of the observation time series were removed
by visual checking.

3. Methods
3.1. Process‐Based Model

A process‐based model considering the surface energy balance and heat transfer was used to derive consistent Ts
(Figure 2). The process of the surface energy balance is composed of solar radiation (downwelling), longwave
radiation (downwelling and upwelling), latent heat, sensible heat, and conduction heat flux through the snow
cover and ground surface:

(1 − α)SWd + LWd + LWu + Qh + Qe + Qc = 0 (1)

where α is the land surface albedo, LWu is the emitted longwave radiation (W m− 2), Qh is the sensible heat (W
m− 2), Qe is the latent heat (W m− 2), Qc is the conduction heat flux through the snow cover and ground surface
(W m− 2).

Figure 1. (a) The distribution of the China Meteorological Administration (CMA) stations across China. (b) The number of
stations with observations of both the air temperature and snow depth observations. (c) The elevation distribution of stations
grouped by snow‐covered conditions. The size of the symbols in (a) represents the year of the measurements, with a
maximum of 67 years and a minimum of 18 years.

Table 1
List of Used Observations, Including Near‐Surface Air Temperature (Ta), Air Pressure (airP), Snow Depth (HS), Ground Surface Temperature (Ts), Downwelling
Longwave Radiation (LWd), and Downwelling Shortwave Radiation (SWd)

Measurements Coverage N Purpose Source

Ta 1956–2022 632 Forcing and downscaling evaluation China Meteorological Administration

airP 1956–2022 632 Forcing China Meteorological Administration

HS 1956–2022 632 Model input China Meteorological Administration

Ts 2007–2022 632 Model evaluation China Meteorological Administration

LWd 2004–2018 24 Downscaling evaluation Ma et al. (2020); Zhao, Zou, et al. (2021); Zhu et al. (2021)

SWd 2004–2018 12 Downscaling evaluation Ma et al. (2020); Zhao, Zou, et al. (2021)

Note. N means the station number.
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The influence of snow cover on the soil thermal regime was considered by incorporating the heat transfer equation
to calculate the surface heat balance. The heat transfer process is as follows:

C
∂T
∂t
=
∂
∂x
(λs
∂T
∂x
) (2)

where T is the soil temperature (K), C is the apparent soil volumetric heat capacity (J m− 3 K− 1), λs is the soil
thermal conductivity (W m− 1 K− 1), x is the depth (m) from the ground surface downward, and t is the timestep
in day.

3.2. Model Parameterization and Setting Up

The land surface albedo (α) was set as either bare ground albedo (αb = 0.2, Ling & Zhang, 2004) or snow surface
albedo (αsn), depending on the snow cover condition. The αsn was calculated as a function of the difference
between the timestep since the last significant snowfall occurred (more than 1.0 cm) following Dee et al. (2011);
Westermann et al. (2016). For non‐melting conditions, αsn decreases linearly with timestep, while an exponential
decrease is assumed for melting conditions:

αsn,t = {
αsn,t− 1 − 0.008 ⋅ t, non − melting

αmin + exp(− 0.24 ⋅ t)(αsn,t− 1 − αmin), melting
(3)

where αmax = 0.85 is the fresh snow albedo, αmin = 0.50 is the old snow albedo (Dee et al., 2011; Westermann
et al., 2016).

LWu was given from Stefan‐Boltzmann law as:

LWu = − ϵσT4s0 (4)

where ϵ is the ground surface emissivity, σ is the Stefan‐Boltzmann constant (W m− 1 K− 4), and Ts0 (K) is the soil
temperature of the first layer of discretized soil profiles, that is, at the soil depth of 0.03 m (Figure 2). The ground
surface emissivity was set to 0.98 for the snow‐covered period and 0.92 otherwise (Ling & Zhang, 2004).

The sensible heat flux was given from a common parameterization scheme (Walter et al., 2005):

Qh = ρaCpDh (Ta − Ts0) (5)

where ρa is the density of the air (kg m
− 3), Cp is the specific heat of air, assumed to be 1003.5 J K

− 1 kg− 1,Dh is the
exchange coefficient for sensible heat following Ling and Zhang (2004).

Figure 2. Observation instruments and methods for ground surface temperature (Ts) measurement. This figure is revised from
Cui et al. (2020). The 0.03 m means the simulated soil temperature depth, corresponding to the manually measured depth.
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The latent heat flux was calculated using the model developed by Priestley and Taylor (1972) and Boike
et al. (2008):

Qe =
αptΔ(Qn − Qc)

Δ + γ
(6)

where Qn is net radiation near the surface, αpt is the Priestley–Taylor coefficient, Δ is the slope of the saturation
vapor pressure‐temperature curve (kPa K− 1) following Dingman (2015), γ is psychrometric constant (kPa K− 1)
following Brunt (2011). Regarding αpt, Priestley and Taylor (1972) reported 1.26 is reasonable for water and open
grassland surfaces, and it has been used in numerous studies for a variety of ecosystems. However, αpt was found
to be site‐specific and significantly controlled by near‐surface soil moisture as well as vegetation conditions
(Barton, 1979; Fisher et al., 2005; Martens et al., 2017; Miralles et al., 2011). For the bare ground of the CMA
station, the algorithm from GLEAM was introduced here (Martens et al., 2017) and the maximum αpt for is
assumed to be 1.04 following Barton (1979); Fisher et al. (2005).

αpt = min[1.26 ⋅ (1 −
θc − θw
θc − θp

), 1.04] (7)

where θw (%) is soil moisture, θc = 30% is critical soil moisture, and θp = 5% is soil moisture of wilting point
followingMiralles et al. (2011); Martens et al. (2017); Purdy et al. (2018). To reduce the possible uncertainty, soil
moisture was derived as an ensemble mean of; six soil moisture products (ASCAT, AMSR2‐JAXA, SMOS‐BEC,
SMOS‐IC, SMAP‐L3, CCI SM) (Zhang et al., 2022). The model assumed a constant soil water content as the
mean from May to September during 2010–2018.

Qc was given as:

Qc = − (Ts0 − Ts) (
HS
λsn

+
z0
λs
)

− 1

(8)

where Ts is the ground surface temperature (K), and z0 was set to 0.03 m corresponding to the diameter of a
mercury ball thermometer (Figure 2). λsn and λs are the snow and soil thermal conductivity (W m− 1 K− 1).

The λsn was considered to be solely dependent on snow density (ρsn, kg m
− 3) following Douville et al. (1995):

λsn = λi(
ρsn
ρi
)

1.88

(9)

where λi is the ice thermal conductivity of 2.2 Wm− 1 K− 1, ρi is the ice density of 920 kg m
− 3. Static snow density

is assumed here and was set to 200 kg m− 3 based on the stand‐alone in situ measurements (Cao et al., 2023;
Zhong, Zhang, Su, et al., 2021).

The soil thermal conductivity was treated as a mixture of the volumetric fractions (θ) of soil minerals (m), water
(w), ice (i), and air (a) following Cosenza et al. (2003):

λs = [θm
̅̅̅̅̅
λm

√
+ θw

̅̅̅̅̅
λw

√
+ θi

̅̅̅̅
λi

√
+ θa

̅̅̅̅̅
λa

√
]
2

(10)

where soil air content (θa) is set as 5%. During the soil freezing period, soil ice content (θi) is set as the soil water
content minus the unfrozen water content (Equation 13). Soil mineral thermal conductivity (λm) was set to
2.92 W m− 1 K− 1 for the bare ground (Cao, et al., 2019, 2023; Ling & Zhang, 2004). While λm is variable, our
sensitivity experiments indicated that λm has a minimal influence on the simulated Ts at the shallow depth of
0.03 m (not shown). The water and air thermal conductivity (λw and λa) were set to 0.56 W m− 1 K− 1 and
0.025 W m− 1 K− 1, respectively.
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The soil heat capacity for the soil process that accounts for the latent heat of freezing and melting of water/ice was
given as:

C = Cs + L
∂θw
∂T

(11)

Cs = Cmθm + Cwθw + Ciθi + Caθa (12)

where Cs is soil volumetric heat capacity (J m
− 3 K− 1), and L is the volumetric latent heat of melting for ice (J

m− 3). Similar to the soil thermal conductivity, the volumetric heat capacity of the soil was obtained by
considering the mixture of minerals, water, ice, and air.

When the soil was frozen, the unfrozen water or super‐cooled water was parameterized following Niu and
Yang (2006):

θw = θsat{
103L(T − Tfrz)

gTψsat
}

− 1
b

(13)

where θsat is the saturated soil moisture (%), g is the acceleration due to gravity of 9.8 m s− 2, Tfrz is the freezing
point temperature (273.15 K), ψsat is the saturated soil matric potential depending on the soil material properties,
and b is the Clapp–Hornberger parameter. The soil material property information from Shangguan et al. (2013)
was used in this study.

For the profile of the model, we used 5‐layer snow, 16‐layer soil at 0–1 m, and 90‐layer soil at 1–10 m. A lower
boundary condition of zero heat flux was used for the simulation. The first 5 years of the model forcing were used
to spin up the model by running it 20 times (100 years) before the simulation.

3.3. Model Forcing and Downscaling

The model forcing includes Ta, LWd, SWd, wind speed, and airP.While Ta and airP are from the CMA network, the
other atmospheric forcing, including: LWd, SWd, and wind speed are from ERA5 as they are not available in the
CMA network. Note that data gaps were found for CMA observations, and ERA5 was used to fill the gap. Despite
the inherent uncertainties, ERA5 was found to improve significantly compared to its predecessor, that is, ERA‐
Interim (He et al., 2021), and was demonstrated to be suitable for process‐based simulations (i.e., Graham
et al., 2019; Tarek et al., 2020). The original ERA5 data are subject to a coarse spatial resolution (0.25° or 31 km,
Hersbach et al., 2020), and hence cannot capture the strong spatial variability arising from complex terrain
(Figures 1a and 1c). For this reason, the ERA5 was downscaled by adopting the method of Fiddes and
Gruber (2014), Cao et al. (2017), Cao, Zhang, et al. (2019). This method conducts elevation and topography
correction (slope, aspect, and sky viewer factor) for SWd and additionally considers the vertical variation of the
cloud composition of the all‐sky radiance for LWd. A 3‐D statistical downscaling method was used to produce Ta
and airP via solving the lapse rate based on the pressure‐level data sets. The downscaling scheme has been
successfully applied in the complex terrain, that is, the Alps (Fiddes et al., 2015; Fiddes & Gruber, 2014) and the
Tibetan Plateau (Cao et al., 2017; Martin et al., 2023).

3.4. Snow Depth Correction

The measured HS at the CMA stations was used as the model input, and the missing daily data were filled using
the calibrated HS from ERA5. This is because the original ERA5 snow depth was reported to be biased due to the
unsuitability of snow densification (Cao et al., 2020). The ERA5 HS was calibrated using the observations at each
station. This was achieved by conducting a linear fitting between the observed HS and that from ERA5. Note that
if the calibrated HS is smaller than 1 cm, it is set as 0 cm.

3.5. Model Evaluation

The downscaled Ta and the calibrated HS from ERA5 were evaluated against the CMA stations. The downscaled
LWd and SWd from ERA5 were evaluated against the stand‐alone sites (see Sec.2.2), respectively. The mean bias
(BIAS) and root‐mean‐square error (RMSE) are introduced here as evaluation metrics:
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BIAS =
1
N
∑
N

i=1
(mod − obs) (14)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(mod − obs)

2

N

√

(15)

where N is the total number of measurements, and mod and obs are modeled
and observed variables, respectively.

4. Results
4.1. Evaluation

4.1.1. Downscaled Model Forcing

Benefiting from the well‐resolved lapse rate, the downscaled Ta shows a good
agreement with the observations at the 632 CMA stations, with the bias and
RMSE being 0.3°C and 1.9°C, respectively (Figure 3a). In other words, the
RMSE of downscaled Ta was reduced by 1.0°C compared to the original
ERA5. The ERA5 radiation products also guarantee the accuracy of the ra-
diation forcing. The bias of the downscaled daily LWd is − 21.5Wm− 2 and the
RMSE is 29.3 W m− 2 (Figure 3b). The bias of the downscaled daily SWd is
5.9Wm− 2 and theRMSE is 36.4Wm− 2 (Figure 3c). The downscaled radiation
is found to significantly reduce the ERA5 uncertainty and be comparable to the
satellite‐based estimates/retrieval (e.g., Jiang et al., 2020; Tang et al., 2023).

The results demonstrate that there is generally a good agreement between the calibrated ERA5 HS and the ob-
servations, with the bias being about − 0.4 cm and an RMSE of 4.1 cm (Figure 3d). The calibrated HS from ERA5
is also consistent with the observations (not shown). Overall, the evaluation results indicate that the downscaled
meteorological variables and calibrated HS are generally consistent with the observations and can be used as
suitable forcing/inputs for the numerical simulation.

4.1.2. Simulated Ground Surface Temperature

The results indicate that Tmods agrees with the observed ground surface temperature (Tobss ) well, with the bias about
0.8°C and the RMSE ranging from 2.8 to 1.5°C at different temporal scales from daily to annually (Figures 4a and
4b). The simulated mean annual ground surface temperature (MAGST) is generally close in both the snow‐free
and snow‐covered sites (Figure 5, RMSE = 1.6°C vs. 1.4°C). The surface offset (SO, as Ts − Ta) in winter, which
describes the influences of the snow layer on the soil thermal regime, shows a slight bias of 0.1°C and an RMSE of
2.4°C. They both indicated the suitability of the model for capturing snow insulation effects (Figure 4c). Among

Figure 3. Evaluation of the downscaled daily (a) air temperature (Ta),
(b) downwelling longwave radiation (LWd), (c) downwelling shortwave
radiation (SWd) from ERA5, and (d) calibrated daily snow depth (HS) from
ERA5. N is the number of measurements used for the evaluation.

Figure 4. Evaluation of the simulated ground surface temperature (Tmods ) with the observations (Tobss ) at daily, monthly, and annual scales (a and b), and the simulated
surface offset (SO) at the snow‐covered sites (c). The evaluations were conducted using observations from the automatic system for 2007–2022.
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the 632 CMA stations, 83.5% have an RMSE of less than 2°C for MAGST;
66.8% of the stations have an RMSE of less than 2°C at a monthly scale; and
76.3% of the stations have an RMSE of less than 3°C at a daily scale (Figure
5). The evaluation results indicate the suitability of the process‐based model
to produce consistent Ts.

4.2. Ground Surface Temperature Over China

4.2.1. Spatial Variability of Ground Surface Temperature

The MAGST (as the mean of 1981–2010) ranges from 0.4 to 30.8°C, with a
mean of 15.0± 6.0°C (Figure 6). The meanMAGST is about 7.8± 2.9°C and
16.3 ± 5.5°C for the snow‐covered and snow‐free sites, respectively. Given
the fact that vegetation cover is absent at the CMA station, it is not surprising
that the MAGST is dominated by the mean annual air temperature (MAAT)
(R2 = 0.94) at the snow‐free sites. At the snow‐covered sites, however, snow
cover plays a key role in the soil thermal state, due to the snow insulation
effects. The results obtained in this study indicate that an increase in HS of
10 cm corresponds to an increase of 1.7°C in MAGST (Equation 16,
P < 0.01), which has the same effect as an increase in MAAT of 1.8°C. The
model was fitted using the measurements from 91 snow‐covered sites during
the measurement period of 1981–2010 and has an R2 of 0.83.

MAGST = 0.96 ⋅MAAT + 0.17 ⋅HS + 2.9 (16)

The strong effect of snow insulation can also be reflected by the SO changes with a certain snow depth. The
segmented linear model showed that a change in HS of 10 cm leads to a variation of 4.2°C in SO (Figure 7). SO is
maintained at around 13.1± 0.9°C after the HS exceeds approximately 28.0 cm, indicating that snow insulation is
only slightly affected by Ta variation beyond the threshold. We acknowledge that such a snow depth threshold is
highly spatially variable, depending on the snow properties (e.g., snow density), climate (e.g., radiation and
wind), and surface conditions (e.g., vegetation) (e.g., Domine et al., 2022; Wang et al., 2016; Zhang et al., 2021).
This highlights the fact that correction of CMA Ts records is an essential step to produce consistent long‐term time
series and to improve understanding of soil climatology in China.

4.2.2. Temporal Changes of Ground Surface Temperature

Overall, the MAGST across China showed a significant warming trend with a
rate of 0.20 ± 0.02°C dec− 1 during 1956–2022, although there was strong
spatial variability among the stations (std. = 0.11°C dec− 1, Table 2,
Figures 8a and 9b). It is clear that the MAGST change was consistent with
MAAT (0.23 ± 0.02°C dec− 1) (Figures 8a and 9a). The overall MAGST time
series shows a very pronounced interdecadal variability corresponding to the
MAAT cooling throughout approximately 1956–1969 (− 0.50 ± 0.15°C
dec− 1), and then continuous warming (0.30 ± 0.02°C dec− 1) after that. While
the MAGST at the snow‐free sites shows a similar interdecadal variability to
the overall changes, no significant MAGST trend is apparent for the snow‐
covered sites before 1970, due to the stable MAAT and HS.

At the snow‐covered sites, Ts always shows a more dramatic warming rate
compared with the snow‐free sites, and this is especially true in winter
(Figures 10a and 10b, Table 2). For example, the overall mean Ts warming
trend is about 0.24°C dec− 1 (or 70.6%) higher than the Ta during 1970–2022
(Table 2). Meanwhile, the HS increases at a rate of 0.8 cm dec− 1 (Figure 10c).
The following linear model was used to predict the seasonal Ts changes (T′s)

Figure 5. The RMSE of the simulated mean annual ground surface
temperature (MAGST). The evaluation was conducted using the ground
surface temperature from the automatic measurement system for 2007–
2022. The triangle and circle symbol represent the snow‐covered and snow‐
free station, respectively.

Figure 6. Simulated mean annual ground surface temperature (MAGST)
across China for 1981–2010.
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in winter using the trends of Ta (T′a) and snow depth (HS′) as predictor
variables:

T′s = 0.29 ⋅ T′a + 0.40 ⋅HS′ + 0.13 (17)

The model was fitted using the measurements from 91 snow‐covered sites
during the measurement period of 1970–2022 and has an R2 of 0.61. Both
predictors are found to be statistically significant at P < 0.01. The results
indicate that air temperature and snow depth both influenced the changes of
Ts. An increased snow depth enhances the effect of snow insulation and
amplifies the warming trend in Ts (Figures 7 and 10). In winter, an increase
trend of 1.00°C dec− 1 in mean Ta corresponds to an increase of 0.29°C dec

− 1

in mean Ts trend, and an increase trend of 1.0 cm dec− 1 in HS corresponds to
an increase of 0.40°C dec− 1 in the mean Ts trend. As a reference, the Ts
(0.27± 0.02°C dec− 1) at snow‐free sites shows a warming rate that is close to
the Ta (0.33 ± 0.02°C dec− 1) (Table 2, Figure 8b).

5. Discussion
5.1. Observation Uncertainties

In the early stage of establishment (1950–1960), the CMA stations were sited
in suburban areas to avoid the disturbance of human activities. However, the
neighboring regions of many CMA stations were changed to urban due to the

rapid urban expansion since the 1970s (Wang et al., 2015). This unnatural change can amplify Ts warming (Hua
et al., 2008; Ren et al., 2008; Tang et al., 2011). Previous studies found that the effect of urbanization on MAAT
warming could be up to 0.07–0.16°C dec− 1, depending on the size of the city (Ren et al., 2008). However,
quantifying such an influence at each site is challenging.

Figure 7. The influence of snow depth (HS) on the surface offset (SO) in
winter (DJF) derived from the snow‐covered sites during 1956–2022. The
boxes represent the median SO grouped by snow depth, with an interval of
5 cm, while the short solid lines represent the 25% and 75% quartiles. A
breakpoint regression (red dashed line) was applied to model the influence of
HS on the SO, and delineates sites where SO is increased by HS and those
where it is not, as either below or above the breakpoint (vertical dashed line).

Table 2
Changes of Mean Annual and Seasonal Ground Surface Temperature (Ts,°C dec

− 1), Air Temperature (Ta,°C dec
− 1), and

Snow Depth (HS, cm dec− 1)

Overall Snow‐covered Snow‐free

Annual Annual DJF JJA Annual DJF JJA

1956–2022

Ta 0.23 ± 0.02 0.30 ± 0.03 0.35 ± 0.08 0.20 ± 0.03 0.13 ± 0.03 0.20 ± 0.05 Not significant

Ts 0.20 ± 0.02 0.35 ± 0.03 0.61 ± 0.08 0.20 ± 0.03 0.11 ± 0.03 0.14 ± 0.05 Not significant

HS – Not significant – – –

1956–1969

Ta − 0.64 ± 0.13 Not significant − 0.96 ± 0.12 − 1.20 ± 0.39 − 0.92 ± 0.14

Ts − 0.50 ± 0.15 Not significant − 0.80 ± 0.13 − 1.24 ± 0.36 − 0.62 ± 0.16

HS – Not significant – – –

1970–2022

Ta 0.34 ± 0.03 0.37 ± 0.05 0.34 ± 0.14 0.30 ± 0.05 0.33 ± 0.02 0.34 ± 0.07 0.27 ± 0.03

Ts 0.30 ± 0.02 0.40 ± 0.04 0.58 ± 0.12 0.27 ± 0.05 0.27 ± 0.02 0.26 ± 0.06 0.23 ± 0.03

HS – 0.8 ± 0.3 – – –

Note. DJF means December to February, and JJA means June to August.
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According to the Surface Meteorological Observation (China) Specifications
(CMA, 2013), Ts is obtained from the bare ground. The simulation conducted
in this study followed this principle and used the parameterization for bare
ground. In such a case, the influence of vegetation on Ts cannot be reflected by
the corrected Ts present here. This also partly explains the more dramatic Ts
warming in China compared to vegetation‐cover areas (Qian et al., 2011).

5.2. Model Uncertainties

A consistent soil moisture was assumed over time in the process‐based model.
This is a significant drawback and may introduce uncertainty in the Ts sim-
ulations. Wang et al. (2011) reported a gradual drought trend over China since
1950. This means the Ts warming trend is likely underestimated due to weaker
soil evaporation introduced by soil moisture decline (Long & Ren, 2023). To
reduce the significant uncertainties of satellite‐based soil moisture, the
ensemble mean of the six widely used products was used here. However, due
to the lack of in situ observations, the suitability of the soil moisture and the
uncertainty introduced in Ts could not be assessed in this study. The static
hydrology is considered reasonable to avoid uncertainties of soil moisture
introduced by precipitation of the reanalyzes and high computational cost of
water balance (Zhou et al., 2017).

Snow density is controlled by a range of complex mechanisms, which
depend upon, for example, the atmospheric conditions (wind speed and
radiation), topography (slope aspect), surface characteristics (vegetation and
roughness), and retained liquid water (Cao et al., 2020; Lynch‐
Stieglitz, 1994). Snow density is hence strongly variable in both time and
space (Zhong et al., 2014). Unfortunately, previous studies reported that the
snow density at the CMA stations was not reliable (Kinar & Pomeroy, 2015;
Zhong, Zhang, Su, et al., 2021). Therefore, we used a constant snow density
of 200 kg m− 3 throughout the snow processes based on stand‐alone in situ
measurements (Zhong, Zhang, Kang, & Wang, 2021). We acknowledge that
the snow density used here was overestimated during the snow accumula-
tion period and underestimated during the snow‐melt period due to the snow
thermal metamorphism as well as the presence of liquid water. We hence
expect that the simulated Ts was too cold in autumn and too warm in late
winter, although the results were found to be reasonable in representing the
insulating effect of snow (Figure 4c).

5.3. Comparisons With Previous Results and Implications

The Ts has been extensively investigated based on CMA observations (Li
et al., 2024; Wang et al., 2018; Zhang et al., 2016), however, many of the

previous studies overestimated the warming trend without considering the change of measurement systems. For
example, Wang et al. (2018) reported that the winter minimum Ts increased at a rate of 1.1°C dec

− 1 during 1965–
2014 with an artificial amplified warming rate of 2.8°C dec− 1 from 1999 to 2014, during which the measurement
system was switched (Cui et al., 2020). Wang et al. (2017) showed a more pronounced MAGST warming trend
(about 0.41°C dec− 1 during 1970–2015) compared with the estimation present here. In addition, some previous
studies significantly underestimated the difference between MAAT and MAGST without considering the snow
insulation effects raised from inconsistency measurements (e.g., Liao et al., 2019;Wang et al., 2017). On the other
hand, recent analyses based on a homogenized data set revealed that the trend of MAGST in China was
approximately 0.27°C dec− 1 from 1961 to 2016 (Long & Ren, 2023; Xu et al., 2019), which is highly aligned with

Figure 8. The overall mean annual ground surface temperature (MAGST)
and mean annual air temperature (MAAT) anomaly at all sites (a), snow‐free
sites (b), and snow‐covered sites (c). The shadow is the annual anomaly
uncertainty of ±1 standard deviation, the bolded curve represents the 5‐year
smoothing of the original annual anomaly, and the dotted line represents the
original data. Only the trends for 1970–2022 are marked in the figure, and
the full trends can be found in Table 2. All the trends are found to be
significant at P < 0.01.
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our results (i.e., 0.30°C dec− 1 for 1970–2022). We hence strongly suggest that future studies revisit the warming
Ts trend by using consistent records.

Our results indicate the MAAT dominated the MAGST at snow‐free sites due to the absence of vegetation
cover, which is highly consistent with previous studies (i.e., Du et al., 2017; He & Wang, 2020). On the
other hand, Ts warming at the snow‐covered sites was amplified by the increased snow depth (Zhou
et al., 2020). While the snow depth changes are found to be a highly spatial variable (Zhong, Zhang, Kang,
& Wang, 2021), understanding the soil climatology under a warming climate requires comprehensive ob-
servations and state‐of‐the‐art models.

6. Conclusions
Ground surface temperature is widely investigated as an indicator to understand the thermal state of soil. In this
study, we filled the gaps in ground surface temperature records that have arisen from the inconsistent mea-
surements and produced long‐term records for 1956–2022 for the CMA stations based on a process‐based model.
We then investigated the ground surface soil climatology across China based on the consistent records. The main
outcomes are:

1. The simulated ground surface temperature agrees with observations well, with an RMSE of about 1.5°C for the
MAGST. This indicates that the process‐based model combined with downscaled reanalysis forcing is a
suitable way to produce consistent ground surface temperature records.

2. The MAGST (as the mean of 1981–2010) ranged from 0.4 to 30.8°C, with a mean of 15.0 ± 6.0°C at the 632
CMA stations over China. The MAGST was mainly controlled by MAAT and additionally refined by snow
depth. An increase in snow depth of 10 cm or MAAT of 1.8°C corresponds to an increase of 1.7°C in MAGST.

3. Ground surface temperature across China showed a significant overall increase of 0.20 ± 0.02°C dec− 1 for
1956–2022. There was pronounced interdecadal variability for MAGST, cooling throughout 1956–1969
(− 0.50 ± 0.15°C dec− 1), and then continuous warming after this date (0.30 ± 0.02°C dec− 1).

4. Ground surface temperature warming was amplified by the increased snow depth. At the snow‐covered sites,
the ground surface temperature in winter increased by about 0.24°C dec− 1 (or 70.6%) faster than the surface air
temperature, while the trend was very close in snow‐free sites and during the warm seasons.

Figure 9. Estimated trends for the mean annual air temperature (MAAT) (a) and mean annual ground surface temperature
(MAGST) (b) during 1956–2022. The triangle and circle symbols indicate that the trend passes the significance test
(P < 0.05) at the snow‐covered and snow‐free sites, respectively, and the cross symbols indicate that the trend does not pass
the significance test.
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Appendix A: Nomenclature
The following table provides the definitions of symbols used in this study (Table A1).

Figure 10. Anomaly of the mean ground surface temperature (Ts) and mean air temperature (Ta) at the snow‐covered sites in
winter (DJF) (a) and summer (JJA) (b). Anomaly of the mean snow depth at snow‐covered sites in winter (DJF) (c). The
shadow is the annual anomaly uncertainty of ±1 standard deviation, the bolded curve represents the 5‐year smoothing of the
original annual anomaly, and the dotted line represents the original data. Only the trends for 1970–2022 are marked in the
figure, and the full trends can be found in Table 2. All the trends are found to be significant at P < 0.01.

Table A1
Table of Symbols and Variables for This Study

Symbol Name Value or range Unit

Ta Near‐surface air temperature °C

airP Near‐surface air pressure Pa

Ts Ground surface temperature °C

Tmods Simulated ground surface temperature °C

Tobss Observed ground surface temperature °C

MAAT Mean annual air temperature °C

MAGST Mean annual ground surface temperature °C

SO Surface offset °C
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Table A1
Continued

Symbol Name Value or range Unit

HS Snow depth cm

α Land surface albedo Dimensionless

αb Bare ground surface albedo 0.20 Dimensionless

αsn Snow surface albedo 0.50–0.85 Dimensionless

LWd Downwelling longwave radiation W m− 2

SWd Downwelling shortwave radiation W m− 2

LWu Emitted longwave radiation W m− 2

Qh Sensible heat flux W m− 2

Qe Latent heat flux W m− 2

Qc Conduction heat through the snow cover of ground surface W m− 2

ϵ Ground surface emissivity Dimensionless

σ Stefan‐Boltzmann constant 5.67 × 10− 8 W m− 1 K− 4

Ts0 The soil temperature of the first layer of discretized soil profiles K

ρa Air density kg m− 3

ρsn Snow density 200 kg m− 3

ρi Ice density 920 kg m− 3

Cp Specific heat of air 1003.5 J K− 1 kg− 1

Dh Exchange coefficients for sensible heat Dimensionless

αpt Priestley–Taylor coefficient for bare ground 0–1.04 Dimensionless

Δ Slope of the saturation vapor pressure‐temperature curve Dimensionless

γ Psychrometric constant Dimensionless

θw Soil moisture %

θc Soil critical moisture level 30 %

θp Soil moisture wilting point 5 %

z0 Depth of measured ground surface temperature m

x Depth from the ground surface downward m

λsn Snow thermal conductivity W m− 1 K− 1

λs Soil thermal conductivity W m− 1 K− 1

λi Ice thermal conductivity 2.2 W m− 1 K− 1

λa Air thermal conductivity 0.025 W m− 1 K− 1

λw Water thermal conductivity 0.56 W m− 1 K− 1

λm Soil mineral thermal conductivity 2.92 W m− 1 K− 1

C Apparent soil volumetric heat capacity J m− 3 K− 1

Cs Soil volumetric heat capacity J m− 3 K− 1

Ci Ice volumetric heat capacity 2.05 × 106 J m− 3 K− 1

Ca Air volumetric heat capacity 1297 J m− 3 K− 1

Cw Water volumetric heat capacity J m− 3 K− 1

Cm Soil mineral volumetric heat capacity J m− 3 K− 1

L Volumetric latent heat of melting for ice J m− 3

θi Soil ice content %

θa Soil air content 5 %

θsat Saturated soil moisture %

θm Soil mineral content %
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ψsat Saturated soil matric potential depending on the soil texture Dimensionless
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Tfrz Freezing point temperature 273.15 K
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